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Abstract

This thesis explores an innovative approach to intraoperative brain registration by utilizing
Neural Radiance Fields (NeRFs) as differentiable, implicit representations of brain surface
geometry and appearance. Unlike conventional mesh-based techniques, NeRFs allow for
direct optimization of camera positions via backpropagation, significantly enhancing align-
ment accuracy between preoperative and intraoperative imaging. We introduce a robust,
model-agnostic implementation of neural registration within the nerfstudio framework, over-
coming previous limitations regarding customization and adaptability. The primary scientific
contribution involves a comprehensive analysis of multiple loss functions—including L1,
L2, Structural Similarity Index (SSIM), Normalized Cross-Correlation (NCC), and Mutual
Information (MI)—to assess their impact on registration accuracy, convergence rate, and
stability. Experimental results demonstrate that while L1 loss offers rapid and stable con-
vergence, MI and NCC are notably resilient to NeRF-generated visual artifacts, providing
insights crucial for clinical applications. By advancing NeRF-based registration techniques,
this work contributes directly toward improving the precision and reliability of image-guided
neurosurgical procedures.
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Kurzfassung

Diese Bachelorarbeit untersucht einen innovativen Ansatz zur intraoperativen Hirnregis-
trierung durch die Verwendung von Neural Radiance Fields (NeRFs) als differenzierbare,
implizite Darstellungen der Hirnoberflichen-Geometrie und -Erscheinung. Im Gegensatz
zu konventionellen mesh-basierten Techniken ermoglichen NeRFs eine direkte Optimierung
der Kamerapositionen mittels Backpropagation, was die Genauigkeit der Ausrichtung zwi-
schen praoperativer und intraoperativer Bildgebung erheblich verbessert. Wir stellen eine
robuste, modellunabhidngige Implementierung der neuralen Registrierung innerhalb des
Nerfstudio-Frameworks vor, die bisherige Einschrankungen hinsichtlich Anpassungsfahigkeit
und Flexibilitdt tiberwindet. Der primédre wissenschaftliche Beitrag umfasst eine umfassen-
de Analyse verschiedener Verlustfunktionen—einschliefilich L1, L2, Structural Similarity
Index (SSIM), Normalized Cross-Correlation (NCC) und Mutual Information (MI)—um de-
ren Einfluss auf die Registrierungsgenauigkeit, Konvergenzrate und Stabilitit zu bewerten.
Experimentelle Ergebnisse zeigen, dass wahrend der L1-Verlust eine schnelle und stabile
Konvergenz bietet, MI und NCC bemerkenswert widerstandsfahig gegeniiber von NeRF
erzeugten visuellen Artefakten sind, was Erkenntnisse liefert, die fiir klinische Anwendungen
entscheidend sind. Durch die Weiterentwicklung NeRF-basierter Registrierungstechniken
tragt diese Arbeit direkt zur Verbesserung der Prédzision und Zuverldssigkeit bildgefiihrter
neurochirurgischer Eingriffe bei.
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1. Introduction

Neurosurgery is a high-precision medical field where accuracy directly influences patient
outcomes. During brain tumor resections, surgeons rely on image-guided navigation systems
to assist with spatial orientation and accurately locate critical anatomical structures [1]. These
systems typically use a process called registration, which refers to aligning preoperative
Magnetic Resonance Imaging (MRI) data with the patient’s anatomy [2].

The field of computer vision has recently seen remarkable advancements in neural scene
representation techniques, particularly with the introduction of Neural Radiance Fields
(NeRFs). NeRFs represent scenes as continuous functions that map 3D coordinates and
viewing directions to color and density values, enabling high-quality 3D depictions of brain
anatomical surfaces. These implicit neural representations have revolutionized how we model
and render 3D environments, offering differentiable, continuous scene representations that
can be optimized through gradient-based methods [3].

Real-world example of an integrated intraoperative system is Advanced Multimodality
Image Guided Operating (AMIGO) Suite which is being heavily used in surveries in Brigham
and Women’s Hospital.

This thesis builds upon recent work that leverages NeRFs for pose estimation [4] and, more
specifically, for intraoperative registration [5].

We propose to enhance NeRF-based intraoperative registration through a comprehensive
exploration of alternative loss functions beyond the standard L2 loss.

Such research can be highly relevant for AR/VR-assisted surgeries. [6]

Current golden standards of intraoperative registration techniques face several challenges:

1. Brain shift: The brain’s position and shape change during surgery due to cerebrospinal
fluid drainage, gravity, surgical manipulations, and other physical, surgical, or biological
changes, impacting the precision of surgical interventions. [7]

2. Surgical workflow integration: Registration methods should integrate seamlessly into
existing surgical workflows without requiring additional equipment or extensive time.
MRI, while used for preoperative diagnostic purposes, in-surgery require specific O.R.
design, significant workflow interruption, and specific non-magnetic equipment. [8]

3. Speed and accuracy: Registration must be both precise and fast enough to be clinically
viable during surgery. [9]

The approach presented by Fehrentz, Azampour, Dorent, et al. [5] addresses these chal-
lenges by using neural rendering for registration. However, their work primarily focuses
on a hypernetwork-based approach for appearance adaptation and employs a standard L2




1. Introduction

loss for optimization. This thesis extends their work by exploring whether alternative loss
functions might yield better registration results and by analyzing how different style transfer
techniques affect the registration process.

1.1. Research Questions and Objectives
This thesis aims to address the following primary research question:

e How do different loss functions — specifically L1, L2, Structural Similarity Index,
Normalized Cross-Correlation, and Mutual Information — affect the convergence
speed and accuracy of NeRF-based intraoperative registration?

To comprehensively investigate this question, we address several sub-questions:

1. How do various loss functions differ in their convergence rates and final registration
accuracy when aligning preoperative NeRF renderings with intraoperative images?

2. What are the computational efficiency trade-offs between different loss functions in
time-sensitive surgical environments?

3. Which loss functions demonstrate greater robustness to registration challenges, includ-
ing brain shift and visual differences between preoperative MRI-derived renderings and
intraoperative images?

4. How does the optimization trajectory differ between intensity-based losses (L1, L2) and
structural/information-based losses (SSIM, NCC, MI)?

This research is guided by the hypothesis that more sophisticated loss functions—particularly
those capturing structural similarities rather than pixel-wise differences—will demonstrate
faster convergence and greater resilience to domain gaps between rendered and intraoperative
images.

This study is complemented by our novel implementation contribution: a model-agnostic
neural registration framework built on top of nerfstudio [10] that enables direct comparison of
different loss functions without requiring retraining of the underlying NeRF representations.

1.2. Thesis Structure
The remainder of this thesis is organized as follows:

¢ Chapter 2: Provides the necessary background on neural radiance fields, pose estimation
techniques, and current approaches to intraoperative registration. This chapter also
reviews relevant literature on loss functions in image registration tasks.
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Chapter 3: Explains the methodology implemented in this work, including the neu-
ral radiance field architecture, the formulation of different loss functions, and the
optimization framework for registration.

Chapter 4: Presents quantitative and qualitative results of our experiments, analyzing
the performance of each loss function across multiple metrics and scenarios.

Chapter 5: Discusses the implications of our findings for intraoperative registration,
interprets the comparative advantages of each loss function, and considers the practical
implications for clinical adoption.

Chapter 6: Summarizes the key contributions and insights of this research, acknowl-
edges limitations, and suggests promising directions for future work in neural rendering-
based surgical navigation.




2. Theoretical Background and Related Work

2.1. Neural Networks and Backpropagation

Neural Radiance Field (NeRF) models are fundamentally based on artificial neural networks
(ANNs). ANNs are computational models comprising interconnected processing units or
"neurons," arranged in layers that transform input data through a series of non-linear functions
to produce output predictions[11]. Formally, each neuron computes a weighted sum of its
inputs, applies a non-linear activation function ¢(-), and passes the result to subsequent
neurons:

n

y=o0 <Z wix; + b) (2.1)
i=1

where w; represents the weights, x; the inputs, and b the bias term.

Neural networks optimize their parameters through gradient-based learning algorithms,
predominantly backpropagation coupled with stochastic gradient descent (SGD) or its variants.
The training process involves forward propagation of input data through the network, yielding
predictions that are evaluated against ground truth via a differentiable loss function £(6),
where 6 represents the network parameters. Backpropagation then computes the gradient
Vo L(0) by recursively applying the chain rule of differentiation to determine each parameter’s
contribution to the total error.

Parameter updates proceed iteratively according to:

01 =0 —VoL(6r) (2.2)

where 77 denotes the learning rate that governs the magnitude of parameter adjustments. This
optimization process continues over multiple epochs as the network processes mini-batches
of training data, progressively minimizing the objective function and improving the model’s
predictive performance.

2.2. Intraoperative Registration in Neurosurgery

Intraoperative registration is an essential component of neurosurgical procedures, involving
the precise alignment of preoperative imaging data with the patient’s actual anatomy during
surgery. The primary goal of intraoperative registration is to create an accurate spatial
correspondence between the preoperative images — usually Magnetic Resonance Imaging
(MRI) — and the physical patient. Fehrentz, Azampour, Dorent, et al. [5] This alignment
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ensures surgeons can reliably utilize the rich anatomical information provided by preoperative
images, thereby improving surgical accuracy, reducing complications, and enhancing patient
safety.

Various registration methods have been developed to achieve this alignment, ranging from
traditional approaches, such as point-based, surface-based, and volume-based techniques, to
more complex methods like cross-modal registration. These techniques differ significantly in
terms of their computational complexity, equipment requirements, accuracy, and adaptability
to intraoperative changes such as brain shift and tissue deformation.

2.2.1. Traditional Registration Approaches

Traditional approaches to intraoperative registration in neurosurgery can be broadly catego-
rized into the following methods:

¢ Point-based registration: This approach identifies and matches corresponding anatomi-
cal landmarks or artificially placed fiducial markers in both the preoperative images
and physical patient. While conceptually simple, it requires accurate identification of
landmarks and can be time-consuming. [12]

* Surface-based registration: This technique matches surfaces extracted from preop-
erative imaging with surfaces captured intraoperatively, often using techniques like
the Iterative Closest Point (ICP) algorithm. Surface-based approaches typically re-
quire specialized equipment, such as laser scanners or stereo cameras, to capture the
intraoperative surface. [13]

* Volume-based registration: These methods use intensity-based similarity measures to
align volumetric images, but they typically require intraoperative imaging modalities
such as ultrasound or intraoperative MRI, which may not be available in all surgical
settings. [14]

A significant challenge in neurosurgical registration is brain shift, the deformation of brain
tissue that occurs during surgery due to factors such as gravity, cerebrospinal fluid drainage,
and surgical manipulations. This phenomenon can significantly reduce the accuracy of rigid
registration methods and necessitates more advanced techniques.

2.2.2. Cross-Modal Registration

Cross-modal registration refers to the alignment of images from different imaging modalities.
In the context of neurosurgery, this often involves aligning preoperative MRI data with
intraoperative camera images. This presents unique challenges due to differences in:

¢ Information content: MRI provides volumetric data with tissue contrast, while optical
images capture surface appearance with details like blood vessels and lighting effects.
[15]
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* Geometric representation: MRI data is three-dimensional, while camera images are
two-dimensional projections. [16]

¢ Appearance: The visual appearance of tissues differs significantly between MRI and
optical images due to different physical principles of image formation. [17]

Previous work in cross-modal registration has employed techniques such as feature extrac-
tion, mutual information maximization, and deep learning-based approaches to bridge these
differences.

2.3. Neural Radiance Fields (NeRFs)

Neural Radiance Fields, introduced by Mildenhall, Srinivasan, Tancik, et al. [3], represent a
novel approach to scene representation and novel view synthesis. Unlike traditional computer
graphics methods that use explicit representations like meshes or point clouds, NeRFs employ
an implicit neural representation to model scenes.

2.3.1. NeRF Representation

A NeREF is typically implemented as a multi-layer perceptron (MLP) that maps a 3D coordinate
x = (x,y,z) and viewing direction d = (6, ¢) to a color ¢ = (r, g, b) and volume density o

Fo: (x,d) — (c,0) (2.3)

where © represents the learnable parameters of the neural network. This continuous,
differentiable representation allows for rendering from arbitrary viewpoints through volume
rendering techniques.

The rendering process involves casting rays from a camera through image pixels and
evaluating the NeRF at multiple points along each ray. The color of a pixel is computed as a
weighted sum of the colors along the ray, with weights determined by the volume densities:

Cr) = /t (B (b)e(t)dt 2.4)

where T(t) = exp (— fti U(S)dS) represents the accumulated transmittance along the ray
up to point .

2.3.2. NeRF Variants

Since the introduction of the original NeRF, numerous variants have been developed to
address limitations and extend capabilities:

¢ Instant-NGP [18]: Accelerates NeRF training and rendering through multi-resolution
hash encoding, reducing training time from days to minutes.
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* HyperNeRF [19]: Extends NeRFs to handle topological variations in dynamic scenes
through a higher-dimensional representation.

¢ Nerfacto [10]: An implementation-agnostic framework that combines advances from
various NeRF variants for improved performance.

2.3.3. iNeRF: Inverting Neural Radiance Fields for Pose Estimation

Yen-Chen, Florence, Barron, et al. [4] introduced iNeRF, a method that leverages the differ-
entiable nature of NeRFs for pose estimation. Given a target image and a pre-trained NeRF,
iNeRF estimates the camera pose from which the target image was captured. This is achieved
by optimizing the camera pose parameters to minimize the difference between the rendered
image (from the current pose estimate) and the target image.

The key insight of iNeRF is that the camera pose can be optimized through backpropagation,
utilizing the differentiable nature of both the NeRF representation and the rendering process.
This optimization is formulated as:

6 = arg l’l’lgin L (Itargetr Lrendered (C) ) (25)

where ¢ represents the camera pose parameters, gt is the target image, Lendered(§) is
the image rendered from the NeRF using pose ¢, and L is a loss function measuring the
dissimilarity between the images.

2.4. Cross-Modal Inverse Neural Rendering for Registration

Building on the concept of iNeRF, Fehrentz, Azampour, Dorent, et al. [5] proposed a method
for intraoperative registration using cross-modal inverse neural rendering. Their approach
addresses the challenge of cross-modal registration by separating the neural representation
into structural and appearance components:

¢ The structural component captures the geometric properties of the brain and is learned
from preoperative MRI data.

¢ The appearance component is adapted intraoperatively to match the visual characteris-
tics of surgical images.

This separation is achieved through a multi-style hypernetwork that controls the appearance
of the NeRF while preserving its learned representation of the anatomy. The hypernetwork
generates parameters for a subset of the NeRF’s layers, allowing it to produce different
appearances for the same underlying geometry.

During registration, the approach optimizes both the camera pose and the appearance
parameters to minimize the dissimilarity between the rendered and target intraoperative
images. This method has shown promising results in clinical data, outperforming state-of-
the-art methods while meeting clinical standards for registration accuracy.
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2.5. Loss Functions for Image Registration

The choice of loss function is crucial in registration tasks, as it defines the measure of
similarity between images that guides the optimization process. Different loss functions
capture different aspects of image similarity and may be more or less suitable depending on
the specific registration task.

2.5.1. L2 Loss

The L2 loss, or mean squared error (MSE), is commonly used in image registration tasks due
to its simplicity and differentiability. It calculates the squared Euclidean distance between
two images:

Lio(hy I) = % $(1(i) — h(i))? 2.6)

i=1
where N is the number of pixels. While straightforward, L2 loss assumes a direct intensity
correspondence between images, which may not hold in cross-modal scenarios.

2.5.2. Normalized Cross-Correlation (NCC)

Normalized Cross-Correlation measures the similarity between two images independently of
linear intensity transformations:

e () - W) (B) -~ )
VEN(h() - 12N (R(1) — B2

where I; and I, are the mean intensities of the respective images. NCC is particularly
useful when images have different contrast or brightness levels [20].

Lnee(l, b) =

2.7)

2.5.3. Mutual Information (MI)

Mutual Information is a statistical measure that quantifies the mutual dependence between
two random variables, making it particularly suitable for cross-modal registration where the
relationship between intensities is complex:

_ . pll,lz(i/j) )
Bttt = =l 08 (G5 9

where py, 1, is the joint probability distribution of intensities in images I and I, and py,
and pr, are their marginal distributions [21].
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2.5.4. Weighted and Masked L2 Loss

Weighted and masked variants of the L2 loss assign different importance to different regions
of the image:

1

5. w(i) (L (i) — L(i))? (2.9)

1=z

Lywi2(h, L) =

N
Il
—_

where w(i) is a weight or mask value for pixel i. This approach can be useful for focusing
the registration on regions of interest or for ignoring irrelevant areas.




3. Methodology

This chapter presents the methodology for enhancing intraoperative registration using Neural
Radiance Fields (NeRFs). First, it provides an overview of the NeRF-based registration
approach, followed by details on the implementation framework, optimization procedure,
and an examination of various loss functions.

3.1. Overview of the NeRF-based Registration Approach

The core methodology of this thesis builds upon the inverse Neural Radiance Field (iNeRF)
approach originally proposed by Yen-Chen, Florence, Barron, et al. [4] and extended for
cross-modal intraoperative registration by Fehrentz, Azampour, Dorent, et al. [5]. Figure 3.1
provides a high-level overview of the approach.

Mesh NeRF density Standard 1
training set NeRF training !

|

|

+

M
P
DA aupenise T ol Y PA T
n d—t— - %
)/1
N
=5

!% B 0 e o
o @ @ d— +—c(z, d) @qu (fd,fc)_' o

Hypernet Neural Rendering

5]

render

B Engine
Generate Multiple NeRF Hypernet
stylized meshes training sets \ 0 5. training Iterative Pose Estimation

Figure 3.1.: Overview of the NeRF-based intraoperative registration approach. The method
involves preoperative training of a NeRF model on MRI data, followed by intra-
operative optimization of camera pose parameters to match the target surgical
image.[5]

The registration process consists of two main phases:

1. Preoperative Phase: A NeRF model is trained using preoperative MRI data to create an
implicit representation of the brain’s structure.

10
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2. Intraoperative Phase: During surgery, the pre-trained NeRF is used as a differentiable
rendering engine. Given a target intraoperative image, the camera pose (6 degrees of
freedom) is optimized through a gradient-based approach to match the rendered view
with the target image.

3.2. Implementation Framework

One of the primary contributions of this thesis is the development of a flexible, model-agnostic
implementation of neural registration built on the nerfstudio framework. Unlike previous
implementations that were tied to specific NeRF variants, the proposed framework allows for
seamless integration of different NeRF architectures and loss functions.

3.2.1. Nerfstudio Integration

The implementation leverages the nerfstudio framework to ensure flexibility and compatibility
with various NeRF architectures. The key components include:

* Model Agnosticism: The implementation works with multiple NeRF variants, including
the original NeRF [3], Instant-NGP [18], and Nerfacto [10], enabling evaluation of
different architectures” impact on registration performance.

* Registration Optimizer: A dedicated optimizer module (the iNeRFOptimizerBatchedFD
class) that handles camera pose optimization, loss computation, and experiment track-

mng.

¢ Pluggable Loss Functions: A modular interface for different loss functions, enabling
systematic comparison of various similarity metrics.

The advantages of this implementation over previous approaches include:
¢ Easy customization of loss functions without modifying the core registration algorithm
¢ Compatibility with nerfstudio’s pre-trained models
¢ Integration capabilities with hypernetwork-based appearance adaptation

¢ Comprehensive experiment tracking and visualization

3.2.2. Finite Difference Optimization

A notable technical aspect of the implementation is the use of finite difference methods for
gradient computation. During development, challenges were encountered with the gradient
flow being disconnected in the computational graph when using standard backpropagation.
To overcome this limitation while preserving the original concept, a batched finite difference
approach for computing gradients was implemented:

11
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Algorithm 1 Batched Finite Difference Gradient Computation

Input: Current pose parameters 6, small perturbation ¢, batch size B
Output: Gradient VgL
Loriginal, — < ComputeLoss(6) > Compute loss at current pose
VoL <0 > Initialize gradient
coords < {(i,]) for all elements 6; ; in 0} > All parameter coordinates
for batch_start = 0 to |coords| step B do
batch_coords <— coords[batch_start:batch_start + B|
batch_poses < [] > Initialize batch of perturbed poses
for (i,) in batch_coords do
0" 0
0;, < 0 +e > Perturb single parameter
Add 6’ to batch_poses
end for
batch_losses <— ComputeBatchLosses(batch_poses)
for idx, (i,) in enumerate(batch_coords) do
vgw L — batch_losses[;dx]—Lorigina]
17: end for
18: end for
19: return VyL

S e S S S O
S N e

—
A

> Estimate gradient

This approach offers several advantages:
* Robustness to disconnected gradients in the computational graph
¢ Efficient batch processing that significantly reduces computation time

¢ Compatibility with any NeRF model regardless of internal architecture

3.3. Neural Registration Algorithm

The complete neural registration algorithm using the implemented framework is presented
below:

12
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Algorithm 2 NeRF-based Registration with Customizable Loss Functions

1: Input: Pre-trained NeRF model N, target image Liarget, initial pose o, loss function £,
learning rate &, number of iterations T

2: Output: Optimized camera pose ¢

3: Initialize pose parameters ¢ < o

4: Initialize optimizer with pose parameters and learning rate «

5: best_loss <— 0o, best_pose <+ (o

6: fort =1to T do

7. Compute gradient VL using batched finite differences:

8: Loviginat, Irendered <— ComputeLoss(¢) > Forward pass with current pose
9: V¢ L < BatchedFiniteDifference (¢, Loyiginal)
10:  Update pose parameters: § < ¢ —a - VL > Gradient descent step
11: if Lorigina < best_loss then
12: best_loss <= Lyyiginal
13: best_pose < ¢
14: end if
15: if t mod visualize_interval = 0 then
16: Visualize current alignment between Iiqrget and Liendered
17: end if
18: end for

19: return best_pose

The rendered image I.4ereq 1S generated by passing the current camera pose ¢ to the
pre-trained NeRF model, which produces an RGB prediction. The loss £(Itarget, Liendered)
measures the dissimilarity between the target and rendered images using the selected loss
function.

3.3.1. Camera Pose Representation

The camera pose is represented as a 3x4 transformation matrix with the following structure:

Ri1 Rip Riz ty
§=|Ru R Ra ty (3.1)
R31 Rz Rsz t;

where R represents the 3x3 rotation matrix and t represents the translation vector. This 3x4
matrix is converted to the appropriate camera representation using the nerfstudio Camera
class during rendering.

3.4. Loss Functions for NeRF-Based Registration

The effectiveness of NeRF-based registration fundamentally depends on the choice of loss
function, which serves as the mathematical backbone guiding pose optimization. Loss func-

13
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tions quantify the dissimilarity between rendered and target images, effectively creating the
optimization landscape that determines convergence behavior and registration accuracy. This
section provides a comprehensive analysis of five distinct loss functions (L1, L2, Structural
Similarity Index, Normalized Cross-Correlation, and Mutual Information) in the context of
intraoperative neural registration. We examine their mathematical formulations, implemen-
tation considerations, and comparative performance to understand how different similarity
metrics affect registration precision, convergence speed, and robustness to initialization varia-
tions. Our systematic evaluation reveals important insights into selecting appropriate loss
functions for specific neural registration scenarios, particularly in neurosurgical applications
where alignment accuracy directly impacts surgical outcomes.

3.4.1. Role of Loss Functions in Registration

In the context of intraoperative registration using Neural Radiance Fields, the loss function
serves two primary purposes:

1. Similarity Measurement: It quantifies the similarity between the target intraoperative
image and the rendered image from the NeRF model, guiding the optimization process
toward better alignment.

2. Gradient Provision: It provides gradients with respect to camera pose parameters,
enabling optimization of the camera pose.
3.4.2. Implemented Loss Functions

This section details the loss functions implemented and evaluated in this thesis. Further
implementation details can be found in Appendix A.

L1 Loss

The L1 loss, or mean absolute error, calculates the absolute difference between pixel values:

1 N
Luh, k) =+ Y 1) = b)) (3.2)

1:1
where N is the number of pixels in the images.
Key characteristics of L1 loss include:

¢ Less sensitivity to outliers compared to L2 loss
¢ Linear behavior that can lead to faster convergence in some cases

¢ Simple gradients that are constant with respect to the error magnitude
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L2 Loss

The L2 loss, or mean squared error (MSE), is the standard baseline approach:

1
N :

1

(L(i) — L(i))? (3.3)

™=z

Lio(L, L) =

Il
—

Key characteristics of L2 loss include:

* Quadratic penalization of large errors
¢ Gradients that scale with the magnitude of the error

¢ Sensitivity to outliers

Structural Similarity Index Loss

The Structural Similarity Index Measure (SSIM) captures structural information in images:

<2.”x.”y + Cl)(z‘Txy + )
SSIM(x,y) = 3.4
W) = e a e+ &) G4
The SSIM loss is then defined as:
Lssiv(h, ) =1 —SSIM(I3, I) (3.5)

Key characteristics of SSIM loss include:

* Focus on structural information rather than pixel-wise differences
¢ Invariance to certain local transformations

* Better correlation with human visual perception

Normalized Cross-Correlation (NCC)

Normalized Cross-Correlation measures the linear relationship between two images while
being invariant to linear intensity transformations:

Y (i) — I)(L(i) — I)

NCC(I1, L) = - - (3.6)
VEN (L) — 122N (L) — R)?
The NCC loss is then defined as:
ENCC(ILIZ) =1- NCC(Il,Iz) (3.7)

Key characteristics of NCC loss include:

¢ Invariance to linear intensity transformations
¢ Robustness to global illumination changes

 Effectiveness for cross-modal registration tasks
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Mutual Information (MI)

Mutual Information quantifies the statistical dependence between two random variables:

_ - P50 ]) )
Mith ) = Zpni s (515 e

The MI loss is defined as:

Lyi(I1, L) = —MI(1y, I) (3.9)

Key characteristics of MI loss include:

* Ability to capture complex, non-linear relationships between image intensities

3.5.

Suitability for cross-modal registration

Robustness to partial overlap between images

Experimental Setup

To rigorously evaluate the impact of different loss functions on Neural Radiance Field (NeRF)
based intraoperative registration, a systematic experimental framework was designed with
controlled variables and precise measurement protocols.

3.5.1. Technical Configuration

The experiments were conducted with the following specifications to ensure fair and consistent
comparison across loss functions:

Optimization Parameters: Fixed at 50 iterations across all experiments to standardize
convergence conditions

Optimization Algorithm: AdamW optimizer with a learning rate of 0.01, chosen for its
adaptive momentum properties and weight decay regularization

Gradient Computation: Finite difference approximation with epsilon value of 1 x 10~*
for gradient stability

Experimental Runs: 10 different initial camera poses per loss function to ensure
statistical significance and account for local optimization challenges

Target Consistency: Identical target image used across all experiments to eliminate
target-specific biases

Data Source Control: Both target images and rendered views sourced from the same
pre-trained NeRF model to eliminate variations due to domain gaps or rendering
inconsistencies

Batch Size: Set at 12 for finite difference calculations to optimize the trade-off between
memory usage and computational efficiency
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3.5.2. Loss Functions

As previously introduced in Section 3.4, five distinct loss functions were systematically
evaluated to compare their performance in NeRF-based registration:

* L1 Loss (Mean Absolute Error)

¢ L2 Loss (Mean Squared Error)

¢ Structural Similarity Index Loss (SSIM)
* Normalized Cross-Correlation (NCC)

e Mutual Information Loss (MI)

Each loss function was selected for its unique properties and potential advantages in
medical image registration: L1 and L2 for their direct intensity comparisons with different
sensitivity to outliers; SSIM for its emphasis on structural information; NCC for its robustness
to linear intensity variations; and MI for its capacity to handle multi-modal image alignment.

3.5.3. Evaluation Metrics

Registration performance was comprehensively evaluated using the following quantitative
and qualitative metrics:

¢ Convergence Efficiency: Measured by identifying the iteration at which the optimal loss
value was achieved, providing insight into each loss function’s optimization trajectory

¢ Computational Performance: Total time required for the complete optimization process,
broken down into component stages including forward passes, gradient calculations,
and parameter updates
* Registration Accuracy: Quantified through:
— Final loss value achieved
- Pixel-wise alignment between registered and target images
— Visual overlay assessment by superimposing the registered image on the target
with 50% transparency
¢ Optimization Stability: Analyzed through:
— Loss curve smoothness and monotonicity
— Variance in pose parameter updates across iterations
- Resistance to local minima in the optimization landscape

¢ Robustness to NeRF Artifacts: Qualitative assessment of how each loss function
performs in the presence of rendering inconsistencies
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3.5.4. Experiment Tracking and Data Collection

A comprehensive tracking framework was implemented to capture all relevant experimental

data:

Parameter Trajectory: Complete camera pose transformation matrix recorded at each
iteration

Loss Dynamics: Full loss history with values captured after each optimization step

Visual Documentation:
— Rendered images saved at regular intervals (every 10 iterations)
— Side-by-side visualizations of target and current rendered images

- Progressive alignment overlays to visually track registration improvement

Performance Profiling:
— Per-iteration timing statistics
- Computational resource utilization
- Batch processing efficiency metrics for finite difference calculations
Metadata Management: Structured JSON tracking files containing complete experi-

mental parameters, iteration history, and final results for reproducibility and further
analysis

All experimental data was systematically organized in a standardized directory structure
to facilitate comparative analysis and ensure reproducibility of results.

3.6.

Summary

This chapter has presented a comprehensive methodology for enhancing intraoperative
registration using Neural Radiance Fields. The key contributions include:

1.

4.

Development of a flexible, model-agnostic implementation of neural registration inte-
grated with the nerfstudio framework

Implementation of a batched finite difference approach for robust gradient computation

Systematic evaluation of multiple loss functions (L1, L2, SSIM, NCC, MI) for NeRF-based
registration

A controlled experimental setup for fair comparison of different approaches

The results of these experiments are presented and analyzed in Chapter 4.
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This chapter presents the experimental results of our investigation into enhancing intraop-
erative registration with Neural Radiance Fields through different loss functions. We begin
with a description of our nerfstudio-based implementation, followed by a comprehensive
evaluation of different loss functions and their impact on registration performance.

4.1. NeRF-Based Registration Implementation

One of the primary contributions of this work is the development of a nerfstudio-based
implementation of neural registration that is agnostic to the specific NeRF model architecture
(e.g., vanilla NeRF, InstantNGP). This implementation leverages finite differences to compute
gradients and provides a flexible framework for experimenting with different loss functions.

4.1.1. Optimization Strategy

Our implementation follows an inverse neural rendering approach inspired by iNeRF [4].
The key steps in our optimization strategy are as follows:

1. Start with an initial camera pose in 3D NeRF space, represented as a transformation
matrix.

2. Render a snapshot from the pre-trained NeRF at the current pose.

3. Calculate the error between the rendered image and the target image using the selected
loss function.

4. Update the camera pose through optimization to minimize this error.
5. Repeat steps 2-4 until convergence or a maximum number of iterations is reached.

To overcome challenges with gradient flow disconnection in the rendering pipeline, we
implemented a finite differences approach for gradient computation. This approach, while
computationally more intensive than direct backpropagation, provides stable and reliable
gradients for pose optimization.

4.2. Loss Function Evaluation

We evaluated the performance of five different loss functions in the context of NeRF-based
registration:
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L1 Loss (Mean Absolute Error)

L2 Loss (Mean Squared Error)

Structural Similarity Index Loss (SSIM)

Normalized Cross-Correlation Loss (NCCQ)

Mutual Information Loss (MI)

Our evaluation focused on convergence behavior, stability, and final registration accuracy
across multiple starting positions.
4.2.1. Experimental Setup

To ensure controlled and reproducible results, we established the following experimental
setup:

¢ All experiments were limited to 50 iterations

¢ AdamW optimizer with a learning rate of 0.01

10 different starting points with the same target image

Both target and rendered images sourced from the same NeRF model

Batch size of 12 for finite differences gradient computation

4.2.2. Convergence Behavior

Table 4.1 summarizes the average convergence performance of different loss functions in our
experiments.

Table 4.1.: Average convergence performance of different loss functions.

Loss Function Average Best Loss Iteration Average Time Elapsed (s)
L1 39 621
L2 47 624
Structural Similarity Index 49 626
Normalized Cross-Correlation 44 621
Mutual Information 42 621

Our results indicate that L1 loss converges more quickly on average compared to other loss
functions, reaching its best loss value around iteration 39. In contrast, SSIM requires almost
the full 50 iterations before converging to its best value.

Figure 4.1 illustrates the typical convergence behavior of different loss functions during the
registration optimization process.
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Figure 4.1.: Convergence behavior of different loss functions during registration optimization.
The plot shows the evolution of loss as a function of optimization iterations.

4.2.3. Qualitative Analysis

Our qualitative analysis of the optimization trajectories revealed several interesting patterns:

¢ L1 and L2 losses tend to follow smoother, more direct paths during optimization, with
L1 generally converging faster.

* Mutual Information and Normalized Cross-Correlation losses exhibit more "exploratory”
behavior in early iterations, with more pronounced oscillations in the optimization path.

¢ SSIM demonstrates slower initial progress but continues to improve throughout the
optimization process.

¢ MI and NCC appear to be more robust to NeRF rendering artifacts, potentially making
them more suitable for cross-modal scenarios.

4.2.4. Registration Accuracy and Stability

While all loss functions eventually achieved visually satisfactory registration results, our
observations suggest differences in their stability and robustness:

¢ L1 loss provides the fastest convergence while maintaining good stability.

¢ MI and NCC show greater resilience to local optima, potentially offering advantages in
real-world scenarios with imperfect NeRF representations.

¢ SSIM focuses more on structural alignment at multiple scales, which may be beneficial
for preserving anatomical structure correspondence.

4.3. L1 Loss Performance

The L1 loss (Mean Absolute Error) demonstrated the fastest average convergence among the
tested loss functions. Figure 4.2 shows an overlay of the final registered image on the target
for a representative L1 optimization run.

Figure 4.3 shows the corresponding loss history for this optimization run.

The L1 loss function achieved consistent and rapid convergence, reaching its best value at
an average of 39 iterations. This suggests that L1 loss may be preferable in scenarios where
computational efficiency is a priority.
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Figure 4.2.: Overlay of the final registered image on the target image using L1 loss.
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Figure 4.3.: Loss history for registration optimization using L1 loss.
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4.4. 1.2 Loss Performance

The L2 loss (Mean Squared Error) is the most commonly used loss function in NeRF-based
registration approaches, including the original iNeRF implementation. Figure 4.4 shows an
overlay of the final registered image on the target for a representative L2 optimization run.

Figure 4.4.: Overlay of the final registered image on the target image using L2 loss.

Figure 4.5 shows the corresponding loss history for this optimization run.

The L2 loss required more iterations to converge compared to L1, with an average best loss
occurring at iteration 47. This suggests that while L2 can achieve high-quality registration, it
may require more computational resources to reach convergence.

4.5. Structural Similarity Index Loss Performance

The Structural Similarity Index (SSIM) loss focuses on preserving structural information
rather than pixel-wise differences. Figure 4.6 shows an overlay of the final registered image
on the target for a representative SSIM optimization run.

Figure 4.7 shows the corresponding loss history for this optimization run.

The SSIM loss function required the most iterations to reach its best value, with an average
of 49 iterations. This suggests that while SSIM can provide high-quality registration with
emphasis on structural correspondence, it may require more computational time to converge
fully.

4.6. Normalized Cross-Correlation Loss Performance

Normalized Cross-Correlation (NCC) is often used in multi-modal registration scenarios due
to its invariance to linear intensity changes. Figure 4.8 shows an overlay of the final registered
image on the target for a representative NCC optimization run.
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Loss History
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Figure 4.5.: Loss history for registration optimization using L2 loss.

Figure 4.6.: Overlay of the final registered image on the target image using SSIM loss.
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Figure 4.7.: Loss history for registration optimization using SSIM loss.

Figure 4.8.: Overlay of the final registered image on the target image using NCC loss.

25



4. Results

Figure 4.9 shows the corresponding loss history for this optimization run.
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Figure 4.9.: Loss history for registration optimization using NCC loss.

The NCC loss function demonstrated moderate convergence speed, with its best value
occurring at an average of 44 iterations. While slightly slower than L1, NCC showed good
stability and robustness to intensity variations.

4.7. Mutual Information Loss Performance

Mutual Information (MI) is a widely used similarity measure for multi-modal registration.
Figure 4.10 shows an overlay of the final registered image on the target for a representative
MI optimization run.

Figure 4.11 shows the corresponding loss history for this optimization run.

The MI loss function reached its best value at an average of 42 iterations, placing it between
L1 and NCC in terms of convergence speed. The more exploratory optimization path of MI
may contribute to its robustness in complex registration scenarios.

4.8. Limitations and Challenges

Our implementation and evaluation encountered several limitations and challenges that
should be considered:
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Figure 4.10.: Overlay of the final registered image on the target image using MI loss.

Loss History

-0.50000000 /\ A

-0.60000000

Loss

-0.70000000 \/\/

-0.80000000 \/\

AN

-0.90000000

Iteration

Figure 4.11.: Loss history for registration optimization using MI loss.
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4.9.

The use of finite differences for gradient computation, while effective, is computationally
more expensive than direct backpropagation.

Our experiments assumed perfect NeRF representation of the target object, which is
a simplification of real-world scenarios where appearance and lighting variations are
significant.

The computational cost of registration (averaging around 621-626 seconds for 50 itera-
tions) may be challenging for real-time clinical applications.

Our evaluation was limited to a specific set of hyperparameters (learning rate, optimizer,
batch size) and may not reflect performance under different conditions.

Summary of Findings

Based on our comprehensive evaluation, we summarize the key findings of our study:

1.

Our nerfstudio-based implementation provides a flexible framework for experimenting
with different loss functions in NeRF-based registration, independent of the specific
NeRF architecture.

L1 loss demonstrates the fastest convergence among the tested loss functions, making it
potentially suitable for time-sensitive applications.

Mutual Information and Normalized Cross-Correlation losses exhibit more exploratory
behavior during optimization and appear more robust to NeRF rendering artifacts.

SSIM loss shows slower convergence but maintains focus on structural correspondence,
which may be beneficial for preserving anatomical structures.

All five loss functions eventually achieve visually satisfactory registration, suggesting
that the choice of loss function may depend on specific application requirements such
as speed, robustness, or structural preservation.

These results highlight the importance of loss function selection in NeRF-based registration
and provide a foundation for future work in this area.
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In this chapter, we interpret the results of our experiments, discuss the caveats associated
with our experimental setup, highlight the limitations of our current approach, and suggest
directions for future research.

5.1. Interpretation of Results

5.1.1. Loss Function Performance

Our experiments revealed distinct performance characteristics associated with each evaluated
loss function. L1 loss consistently demonstrated faster convergence compared to other loss
functions, notably achieving quicker reductions in error. Additionally, both L1 and L2
losses exhibited smoother and more direct convergence trajectories, which may indicate their
suitability for tasks requiring rapid and stable alignment, such as intraoperative scenarios.

In contrast, Structural Similarity Index (SSIM), Normalized Cross-Correlation (NCC), and
Mutual Information (MI) demonstrated more explorative behavior during initial iterations,
characterized by fluctuating, "jiggly" optimization paths. This behavior suggests these losses
may explore the parameter space more thoroughly at the cost of slower initial convergence.
Mutual Information and NCC, in particular, showed more oscillations, reflecting their sensi-
tivity to variations in pixel intensities but also their potential robustness to certain types of
noise or distortions.

5.2. Caveats of the Experimental Setup

The experimental design involved several key simplifications that limit direct translation to
clinical practice:

¢ Perfect NeRF assumption: Both target and iterative images were synthesized from
the same pre-trained NeRF, eliminating realistic factors such as lighting variations,
surgical environment noise, and intraoperative tissue deformation. Therefore, while the
current setup provides a controlled environment to evaluate the registration method, it
overestimates real-world accuracy.

¢ Finite Differences for Gradient Calculation: Due to complexity in directly implement-
ing backpropagation through InstantNGP-based NeRF models, finite differences were
utilized as a workaround. While effective in proof-of-concept scenarios, this method is
computationally expensive and less precise than automatic differentiation.
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¢ Constant Camera Distance and Fixed Initialization: The experimental scenario as-
sumed a fixed camera distance and a manually chosen initial position that always
provided a partial view of the target region. This is unrealistic in surgical settings,
where initial camera positioning can vary significantly, and occlusions may frequently
occur.

5.3. Limitations
Several limitations affect the current approach:

¢ Computational Efficiency: Finite differences-based gradient estimation significantly
increases computational load, limiting real-time clinical applicability.

¢ Assumption of Model Accuracy: The assumption that NeRF perfectly captures brain
geometry and appearance neglects inevitable inaccuracies in the preoperative model
and intraoperative tissue deformation and appearance changes.

¢ Initialization Sensitivity: The current method heavily depends on the initial camera
pose selection, affecting convergence speed and reliability.

¢ Generalization to Clinical Data: Experiments conducted entirely with synthetic images
derived from a single NeRF model may not generalize well to real clinical images due
to differences in lighting, texture, and anatomical variability.

5.4. Future Work

Future directions for improving and extending the proposed neural registration approach
include:

¢ Automatic Differentiation Integration: Replacing finite differences with automatic
differentiation methods to significantly improve computational efficiency and stability.

¢ Gaussian Splats: Investigating Gaussian Splats as an alternative representation, of-
fering faster rendering, fewer visual artifacts, and potentially superior registration
performance.

¢ Enhanced NeRF Models: Incorporating hypernetwork-based methods to better match
the NeRF model’s density and appearance to actual intraoperative conditions, address-
ing the oversimplification in the current setup.

* Robust Initialization Strategies: Developing methods for automatic or semi-automatic
selection of robust initial camera poses, thus reducing sensitivity to starting conditions
and improving reliability.
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* Hybrid Loss Functions: Exploring combined or adaptive loss functions to leverage
the strengths of multiple similarity metrics, potentially achieving superior registration
accuracy and robustness.

¢ Clinical Validation: Extending evaluation to realistic clinical or phantom datasets to
assess practical applicability, robustness against real-world variability, and identification
of clinical relevance.

Addressing these areas in future research will pave the way for practical clinical applications
of NeRF-based intraoperative registration, enhancing surgical precision and patient outcomes.
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6. Conclusion

This study introduced an enhanced intraoperative registration method using Neural Radiance
Fields (NeRFs), highlighting the critical role of differentiable implicit representations in
accurately aligning preoperative and intraoperative brain surface images. By developing a
flexible, NeRF-model agnostic implementation inspired by iNeRF, the algorithm facilitates
robust and customizable intraoperative registration workflows.

We conducted an extensive exploration of various loss functions (L1, L2, Structural Sim-
ilarity Index, Normalized Cross-Correlation, and Mutual Information) and analyzed their
impacts on the convergence behavior and registration accuracy. The results demonstrated
that L1 and L2 losses provide rapid and stable convergence, making them suitable for clinical
scenarios requiring efficiency and reliability. On the other hand, Mutual Information and
Normalized Cross-Correlation, despite their less direct convergence trajectories, offer greater
flexibility in scenarios where robustness to imaging variations might be advantageous.

Despite these promising findings, the study acknowledges critical simplifications and
assumptions. The current simulation assumes an idealized scenario where the NeRF perfectly
represents the intraoperative brain surface, eliminating realistic noise, lighting variations,
and inaccuracies. Additionally, the computational performance remains limited by the
finite difference gradient estimation method implemented as a workaround for gradient
propagation challenges in InstantNGP models.

Future work should focus on overcoming these limitations by:

¢ Developing more realistic NeRF models that capture intraoperative variability in brain
appearance through enhanced coloring techniques, potentially leveraging hypernet-
works for more robust representations.

¢ Transitioning from finite difference-based gradient calculations to efficient direct back-
propagation methods to improve optimization speed and efficiency.

Further exploration into faster and visually superior methods, such as Gaussian Splatting,
represents a promising direction for significantly improving registration performance and
computational efficiency, ultimately advancing the accuracy and reliability of intraoperative
brain registration in clinical settings.
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This appendix provides additional technical details about the implementation of the NeRF-
based registration approach described in this thesis. The code is available at: https://github.
com/maxfehrentz/style-ngp.

A.1. Software Implementation

The neural registration framework described in this thesis was implemented in Python
using PyTorch. This section provides a detailed description of the key components of the
implementation.

A.1.1. Image Processing and Conversion

The following utility functions handle image processing and conversion between different
formats:

def image_to_tensor(image_path, device) -> torch.Tensor:
# Open the image using PIL
image = Image.open(image_path).convert( )

# Define the transform to convert the image to a PyTorch tensor
transform = transforms.ToTensor() # This will convert to a tensor with shape (C, H, W)

# Apply the transform
tensor = transform(image) # Shape will be (3, 512, 512)

# Permute the tensor to get shape (512, 512, 3)
tensor = tensor.permute(l, 2, 0).to(device)

return tensor.detach().requires_grad_(False)

def show_image (tensor):
plt.figure(figsize=(5, 5))
plt.imshow(tensor.detach() .cpu() .numpy())
plt.axis( )
plt.show()
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A.1.2. iNeRF Optimization

The core of the registration framework is the iNeRFOptimizerBatchedFD class, which imple-
ments inverse NeRF optimization with batched finite differences for gradient computation.
This approach allows for the estimation of camera pose parameters by minimizing the
difference between a rendered NeRF view and a target image.

Initialization

The optimizer is initialized with the following parameters:

def __init__(
self,
experiment_name,
nerf_model,
target_image,
initial_pose,
dataparser_matrix,
dataparser_scale,
camera_params,
loss_fn = nn.MSELoss(),
1r=0.001,
num_iterations=1000,
config_path=None

Parameters include:
* experiment_name: Name for tracking and saving results
* nerf_model: The pre-trained NeRF model
* target_image: The target image to register against
® initial_pose: Initial camera pose estimate

® dataparser_matrix and dataparser_scale: Transform parameters for coordinate sys-
tem alignment

® camera_params: Camera intrinsic parameters
* loss_fn: Loss function for comparing rendered and target images
¢ 1r: Learning rate

* num_iterations: Maximum number of optimization iterations
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Optimization Process

The optimization uses finite differences to compute gradients rather than automatic differen-
tiation. This is implemented in the optimize_step method:

def optimize_step(self, batch_size=4, debug=True):
# Zero gradients
self.optimizer.zero_grad()

# Get current pose parameters
pose = self.pose_param.detach().clone()

# Compute loss for current pose
original_loss, pred_rgb = self.compute_loss_no_grad(pose)

# Small epsilon for finite differences
eps = le-4

# Compute gradients using finite differences in batches
grad = torch.zeros_like(pose)

# Flatten the pose for easter batch processing
num_params = pose.numel ()

# Use coordinate indexring to track which element we’re perturbing
coords = [(i, j) for i in range(pose.shape[0]) for j in range(pose.shapel[1])]

# Process in batches
for batch_idx in range(0, num_params, batch_size):
batch_coords = coords[batch_idx:min(batch_idx+batch_size, num_params)]

# Create a batch of perturbed poses

batch_poses = []

for i, j in batch_coords:
perturbed_pose = pose.clone()
perturbed_pose[i, j] += eps
batch_poses.append (perturbed_pose)

# Stack poses into a batch
batch_poses_tensor = torch.stack(batch_poses)

# Compute losses for all poses in the batch
batch_losses = self.compute_batch_losses(batch_poses_tensor)
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# Calculate gradients
for idx, (i, j) in enumerate(batch_coords):
grad[i, j] = (batch_losses[idx] - original_loss) / eps

# Manually set gradients
self .pose_param.grad = grad

# Perform optimization step
self.optimizer.step()

return original_loss.item(), pred_rgb

This batched approach to finite differences significantly improves performance by comput-
ing multiple perturbed poses in parallel.

Camera Creation and Loss Computation

The optimizer creates cameras from pose matrices and computes losses between rendered
and target images:

def create_camera_from_pose(self, pose):
camera = Cameras (
camera_to_worlds=pose.unsqueeze(0),

fx=self.camera_params[ 1,
fy=self.camera_params[ 1,
cx=self.camera_params [ 1,
cy=self.camera_params [ 1,

camera_type=CameraType.PERSPECTIVE,
height=self.camera_params["h"],
width=self.camera_params["w"],

)

return camera

def compute_loss_no_grad(self, pose):
with torch.no_grad():
# Create camera with the given pose
camera = self.create_camera_from_pose(pose)

# Get outputs using the model’s built-in method for rendering
outputs = self.nerf_model.get_outputs_for_camera(camera)

# Compute loss
pred_rgb, image = self.nerf_model.renderer_rgb.blend _background_for_loss_computation(
pred_image=outputs[ 1,
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pred_accumulation=outputs[ 1,
gt_image=self.target_image,

loss = self.nerf_model.rgb_loss(image, pred_rgb)

return loss, pred_rgb

A.1.3. Loss Functions

Multiple loss functions were implemented and compared for registration accuracy:

Standard Losses

# L1 and L2 losses

11_loss = nn.L1Loss()

12_loss = nn.MSELoss()

huber_loss = nn.SmoothL1Loss(beta=0.5)

Structural Similarity Index Loss

class StructuralSimilarityIndexLoss(nn.Module):
def __init__(self):
super (StructuralSimilarityIndexLoss, self).__init__()

def forward(self, x, y):
# Rearrange dimensions 1f needed
if x.dim() == 3: # [H, W, C]
# Rearrange to [1, C, H, W]
x.permute(2, 0, 1).unsqueeze(0)

y = y.permute(2, 0, 1).unsqueeze(0)

return 1 - pytorch_msssim.ssim(x, y)

Normalized Cross-Correlation Loss

class NormalizedCrossCorrelationLoss(nn.Module):
def __init__(self):
super (NormalizedCrossCorrelationLoss, self).__init__()

def forward(self, x, y):
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# Ensure proper dimensions

if x.dim() == 3: # [H, W, C]
# Handle each channel separately and average
channels = x.shape[2]
ncc_sum = 0.0

for ¢ in range(channels):
x_c =x[..., c].flatten()
y_c = yl..., c].flatten()
ncc_sum += self._compute_ncc(x_c, y_c)

ncc = ncc_sum / channels

else: # Assume [B, C, H, W]
batch_size, channels = x.shape[0], x.shape[1]
ncc_sum = 0.0

for b in range(batch_size):
channel _ncc = 0.0
for ¢ in range(channels):
x_bc = x[b, c].flatten()
y_bc = y[b, c].flatten()
channel _ncc += self._compute_ncc(x_bc, y_bc)
ncc_sum += channel_ncc / channels

ncc = ncc_sum / batch_size

# Convert to loss (1 - NCC since NCC=1 is perfect correlation)
return 1.0 - ncc

def _compute_ncc(self, x, y):
# Mean centering
x_centered = x - x.mean()
y_centered = y - y.mean()

# Compute mormalization factors
x_norm = torch.sqrt(torch.sum(x_centered ** 2) + le-8)

y_norm = torch.sqrt(torch.sum(y_centered ** 2) + le-8)

# Compute NCC
ncc = torch.sum(x_centered * y_centered) / (x_norm * y_norm)

# Ensure result %s in [-1, 1] range
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return torch.clamp(ncc, -1.0, 1.0)

Mutual Information Loss

class MutualInformationLoss(nn.Module):
def __init__(self, bins=32, sigma=0.1):
super (MutualInformationLoss, self).__init__()
self.bins = bins
self.sigma = sigma
self.epsilon = 1le-10 # Small constant to avoid log(0)

def forward(self, x, y):
# Ensure proper dimensions
if x.dim() == 3: # [H, W, C]
x_flat = x.reshape(-1)
y_flat = y.reshape(-1)
else: # Assume [B, C, H, W]
x_flat = x.reshape(x.size(0), -1)

y_flat = y.reshape(y.size(0), -1)

# Scale to [0, 1] if not already
if x_flat.max() > 1.0 or x_flat.min() < 0.0:

x_flat = (x_flat - x_flat.min()) / (x_flat.max() - x_flat.min() + self.epsilon)
if y_flat.max() > 1.0 or y_flat.min() < 0.0:

y_flat = (y_flat - y_flat.min()) / (y_flat.max() - y_flat.min() + self.epsilon)

# Compute mutual information
mi_score = self._compute_mutual_information(x_flat, y_flat)

# Return negative MI as we want to minimize loss
return -mi_score

A.1.4. Experiment Tracking and Visualization
The implementation includes comprehensive experiment tracking and visualization features:
¢ Automatic creation of experiment directories

¢ Saving of intermediate and final renders

Tracking of loss history and optimization progress

¢ Generation of visualization overlays for alignment quality assessment

JSON-based tracking of all experiment parameters and results
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A.1.5. Experimental Evaluation

The implementation supports systematic evaluation of different loss functions and registration
parameters. Example experiments include:

# Experiment 1: L1 loss

inerf_optimizer = iNeRFOptimizerBatchedFD (
experiment_name= ,
nerf_model=nerf_model,
target_image=target_image,
initial _pose=final_initial_pose,
dataparser_matrix=dataparser_matrix,
dataparser_scale=dataparser_scale,
camera_params=camera_params,
loss_fn=11_1loss,
1r=0.01,
num_iterations=50,
config_path=config_path

# Experiment 2: L2 loss
inerf_optimizer = iNeRFOptimizerBatchedFD(
experiment_name= ,

loss_fn=12_loss,

# Exzperiment 3: SSIM loss
inerf_optimizer = iNeRFOptimizerBatchedFD (
experiment_name= ,

loss_fn=structural_similarity_index_loss,

# Additional experiments with NCC and MI loss functions

A.2. Hyperparameter Settings

This section details the key hyperparameters used in our neural registration framework and
their effects on the registration process.
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A.2.1. Optimization Hyperparameters

Learning Rate: We primarily used learning rates between 0.001 and 0.01. Higher
learning rates can lead to faster convergence but may cause instability, while lower rates
provide more stable but slower optimization. For most experiments, a learning rate of
0.01 provided good results.

Number of Iterations: Experiments were conducted with 50-1000 iterations. For
evaluation purposes, 50 iterations were often sufficient to demonstrate the effectiveness
of different loss functions, while longer runs (500-1000 iterations) were used for final
results to ensure convergence.

Batch Size: The finite difference gradient computation used batch sizes between 4 and
12. Larger batch sizes increased memory usage but significantly improved computation
time by parallelizing the evaluation of perturbed poses.

Epsilon Value: A value of le~* was used for finite difference calculations. This
represents the small perturbation applied to each parameter when computing gradients
numerically.

A.2.2. Loss Function Hyperparameters

Different loss functions require specific hyperparameters:

Mutual Information Loss:
— Bins: 32 (controls the discretization of intensity values)

- Sigma: 0.1 (kernel width for soft binning)

Structural Similarity Loss:

- Uses default parameters from the PyTorch SSIM implementation

Huber Loss:
- Beta: 0.5 (controls the transition point between L1 and L2 behavior)

A.2.3. Camera Model Parameters

Camera intrinsic parameters used in the experiments:

Image Resolution: 512x512 pixels

Focal Length: fl_x = fl_y = 955.4050067376327

Principal Point: cx = cy = 256.0

Field of View: 0.5235987755982988 radians (approximately 30 degrees)

Distortion Parameters: All set to 0 (no distortion modeling)
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A.2.4. Performance Considerations

The choice of hyperparameters significantly impacts both registration accuracy and computa-
tional efficiency:

¢ Increasing batch size from 4 to 12 resulted in approximately 3x speedup in gradient
computation with minimal impact on convergence.

¢ The choice of loss function often had a greater impact on registration accuracy than
tuning other optimization parameters. For most medical image registration scenarios,
Normalized Cross-Correlation (NCC) and Structural Similarity Index (SSIM) provided
better results than L1 or L2 losses due to their robustness to intensity variations.

¢ Optimization progress was tracked at intervals of 10-50 iterations to enable early
stopping if needed, though most experiments ran to completion.

* Rendering resolution remained fixed at 512x512 for all experiments, as this provided a
good balance between detail and computational efficiency.
A.2.5. Experimental Configurations

For systematic comparison of different registration approaches, we consistently used the
following configuration across experiments:

¢ Initial pose perturbation magnitudes were consistent across all compared methods
¢ All methods used the same NeRF model trained with identical hyperparameters

¢ 5 repeated trials with different random initializations were conducted for each experi-
mental configuration to account for optimization variability

* Target images were selected from held-out test views not used during NeRF training

The hyperparameter values listed above represent our final configuration after extensive
experimentation. These settings provided a good balance between registration accuracy,
convergence reliability, and computational efficiency across the datasets used in this study.
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Brain Shift The deformation of brain tissue during surgery due to factors such as cere-
brospinal fluid drainage, gravity, and surgical manipulations, which reduces the accu-
racy of rigid registration methods.

Cross-Modal Registration The process of aligning images from different imaging modalities,
such as preoperative MRI data with intraoperative camera images, which presents
unique challenges due to differences in information content, geometric representation,
and visual appearance.

Finite Difference A numerical method for computing gradients by evaluating a function at
multiple perturbed points, used in this thesis to overcome limitations with gradient
flow in the computational graph.

Hypernetwork A neural network that generates parameters for another neural network, used
to adapt the appearance of NeRF renderings while preserving geometric structure.

iNeRF (Inverse Neural Radiance Field) A method that inverts Neural Radiance Fields for
pose estimation by optimizing camera parameters through backpropagation to minimize
the difference between rendered and target images.

Intraoperative Occurring during a surgical procedure, specifically referring to the registration
and imaging processes that take place while surgery is being performed.

L1 Loss A loss function that calculates the absolute difference between pixels in two images,
often more robust to outliers than L2 loss.

L2 Loss Also known as Mean Squared Error (MSE), a loss function that calculates the squared
Euclidean distance between two images, commonly used in image registration due to
its simplicity and differentiability.

Model Agnosticism The quality of an implementation that works with multiple model vari-
ants without being tied to a specific architecture, allowing for greater flexibility and
comparative evaluation.

Mutual Information (MI) An information-theoretic measure that quantifies the mutual de-
pendence between two random variables by evaluating their joint and marginal probabil-
ity distributions, particularly useful for cross-modal registration where the relationship
between image intensities is complex.
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NeRF (Neural Radiance Field) An implicit neural representation that maps 3D coordinates
and viewing directions to color and volume density, enabling novel view synthesis of
complex scenes through a continuous, differentiable function optimized using volume
rendering techniques.

Nerfstudio An implementation-agnostic framework for developing and deploying Neural
Radiance Field models, which combines advances from various NeRF variants for
improved performance.

Normalized Cross-Correlation (NCC) A similarity measure that calculates the correlation
between two signals normalized by their standard deviations, making it robust to linear
intensity transformations between images.

Registration The process of aligning two or more datasets into a common coordinate sys-
tem, essential in neurosurgery for ensuring accurate spatial correspondence between
preoperative imaging data and the patient’s anatomy.

Structural Similarity Index (SSIM) A perceptual metric that quantifies image similarity
based on changes in structural information, luminance, and contrast, modeled after the
human visual system.

Style Transfer The process of applying the visual style of one image to the content of another
image, used in cross-modal registration to bridge appearance gaps between different
imaging modalities.
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